

To prepare chitosan capsules via interfacial initiated chitosan macromonomer in situ polymerization

Weijun Liu · Guanghong He · Zhicai He

Received: 21 May 2011 / Revised: 11 July 2011 / Accepted: 21 August 2011 /

Published online: 31 August 2011

© Springer-Verlag 2011

Abstract In this study, we present a method interfacial in situ polymerization of chitosan macromonomer (CM) to prepare biocompatible and biodegradable chitosan capsules, *N*, *N'*-methylene-bis-acrylamide (Bis) used as cross-linking agent. Methyl acrylic acid (MAA) is grafted onto the chitosan chain to obtain a water soluble double bond CM derivative. The molecular structure of chitosan derivative is confirmed by FT-IR and ¹H NMR. The oil soluble cumene hydroperoxide (CHPO) oxidizer and the water soluble reductant tetraethylenepentamine (TEPA) are used as redox initiation couple for producing radical at the oil/water emulsion interface when them encounter to initiate CM polymerization. The interfacial radical can in situ initiate CM to prepare capsules. The structure and morphology of the chitosan capsules are characterized by FESEM and TEM. All the results confirmed that the interfacial in situ polymerization can initiate double bond to prepare capsule at room temperature and under ambient pressure.

Keywords Capsules · Chitosan · Interfacial · In situ polymerization

Introduction

Hollow capsules have been widely used in fields of pharmaceuticals, cosmetic, food, textile, adhesive, agricultural industry, the microcapsules of artificial cells, and protection of proteins, enzymes, DNA, and catalysis [1–3]. All these based on their isolating property, large inner volume, and tunable permeability [4–6]. To obtain the microcapsules with versatile structures and properties, many efforts are continuously tried to explore various techniques for fabrication. The template method as a

W. Liu (✉) · G. He · Z. He

Department of Polymer Science and Engineering, School of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, Zhejiang, People's Republic of China
e-mail: lwj3600@ustc.edu

common method to prepare microcapsules often needs a template such as polymer beads [7], radical suspension polymerization [8], electrocapillary emulsification [9], and emulsion droplets [10]. In the template method, the target material is precipitated or polymerized on the surface of the template. Then, the template is removed to form a cavity, leading to a hollow sphere structure [11, 12]. The hollow spheres are generally fabricated by inorganic material of silica or non-silica oxides directly deposited on the surface of the polystyrene templates [13]. Another common method to fabricate microcapsules by the layer-by-layer (LBL) assembly [14, 15], multilayer microcapsules with ultrathin wall thickness, and tunable wall structures and properties has been fabricated. They have shown potential applications in materials and life science as microreactors, microcontainers, drug-delivery vehicles, protective shells for cells or enzymes, transfection carriers for gene therapy, and biosensors, etc. However, fabrications of biocompatible and biodegradable hollow microspheres from natural polymers and their derivatives have been scarcely published. It is important to develop a new methodology for the preparation of shell cross-linked hollow microsphere using natural materials for a sustainable development and human safety.

Chitosan (CS), linear copolymer consisting of β -1,4-linked 2-amino-2-deoxy-D-glucopyranose and 2-acetamido-2-deoxy-D-glucopyranose units, a weak cationic polysaccharide produced by the deacetylation of the natural polymer chitin, has many useful biological properties, such as biocompatibility, biodegradability, and bioactivity [16, 17]. To these ends, microparticles of CS in hundreds of micrometers have been prepared in different ways, including coacervation–precipitation, spray-drying, emulsion cross-linking, emulsion droplet coalescence, reverse micellization, ionic gelation, and sieving method [18]. Complexation between CS and oppositely charged polysaccharides in solution is another way to synthesize CS microparticles; however, this process often leads to the formation of fibers [19]. Because of its advantages of fine control of the compositions and the thickness of the capsules, the LBL method received more and more attention in recent years [20], and so on. Most of them are involved in a multi-stage and time-consuming strategy. There are few reports to prepare capsules containing liquid cores via interfacial *in situ* polymerization at room temperature and ambient pressure.

In this study, we described the preparation of core shell CS capsules containing liquid cores through redox interfacial initiated *in situ* polymerization of CM in emulsion. Redox initiation pairs have been used extensively in the emulsion polymerization of vinyl monomers [21–23]. Radicals can be produced rapidly compared with thermally decomposed initiators such as persulfate. Among the redox initiation pairs, the couples composed of one water-soluble component and one oil-soluble component exhibit different characteristics, i.e., radicals are formed mostly at the water–oil interface. In previous articles, several groups have taken advantages of this method to prepare different polymer colloids particles and hybrid materials [24, 25]. In those studies, several pairs of such redox initiators are employed. They are cumene hydroperoxide (CHPO)/iron (II) sulfate (FS), CHPO/tetraethylpentamine, tert-butyl hydroperoxide with different water-soluble reductants [26, 27]. Our strategy here can provide a general method to synthesize

capsules from natural polysaccharides that have many applications in the pharmaceutical and medical field due to their biocompatibility and degradability.

Experimental section

Materials

CS was obtained from San Huan Ocean Biochemical Co. Ltd. China, its degree of deacetylation and the molecular weight were determined to be 95% and 5.0×10^5 , respectively. Carbodiimide (EDAC), *N*, *N'*-methylene-bis-acrylamide (Bis), and Cumene hydroperoxide (CHPO) were purchased from Sigma-Aldrich. Tetraethyl-eneptamine (TEPA), octylphenyl poly (ethylene glycol) ether ($n = 4$) (OP-4), and octylphenyl poly (ethylene glycol) ether ($n = 10$) (OP-10) were purchased from Shanghai Chemical Reagent Company. All other agents were analytical grade and used without any further purification. Milli-Q water was obtained from a Milli-Q[®] Gradient System from Millipore equipped with a Quantum[™] cartridge.

Preparation of water soluble CS macromonomer via EDAC as condensation reagent and determination of the graft density of MAA

The synthesis of CS macromonomer (CM) was prepared by grafting MAA onto CS chain via condensation between the amine groups and the carboxyl groups under the catalysis of carbodiimide. The preparation described as follows: 1 g CS was dissolved in 100 mL water containing 1 mL acetic acid, 1 mL MAA, 1 g EDAC was added. The reaction took place over 24 h at room temperature under agitation. In order to remove the free MAA and other byproducts, the mixture was dialyzed in a filter membrane with a molecular weight cut off of 7000 Da against a large amount of triple-distilled water for 5 days. Finally, MAA grafted CM was obtained by freeze-drying.

We can determine the graft density of MAA onto CS via element analysis. Quality percentage content (C and N %) in CS and CM can be determined via element analysis. Mole ration (r) of C and N: $r = \frac{n_C}{n_N} = \frac{m_C/M_C}{m_N/M_N} = \frac{m_C}{m_N} \cdot \frac{14}{12}$. The contents of N has not changed in CS chains after MAA has been grafted into CS, there just add four carbon atoms in each cyclose. So, graft density of MAA(%) = $\frac{r_{CM} - r_{CS}}{4} \times 100\% = 32\%$.

Preparation of CS capsules via interfacial in situ polymerization

The typical procedure for the preparation of CS capsules is as follows: CHPO (150 mg) was dissolved in hexane (3.5 mL) to obtain the dispersed liquid. The nonionic surfactants of OP-4 and OP-10 were selected as emulsifiers, and Milli-Q water was used as the continuous phase. In a typical experiment, OP-4 (1.5 g), OP-10 (2.5 g), the water soluble components of CM (0.5 g), and crosslinking reagent of Bis (20 mg) were dissolved in Milli-Q water (100 mL) to form the continuous

phase. The dispersed liquid was dropped into the continuous phase and the obtained mixture was sonified to obtain normal emulsion. Then, the emulsion was purged with nitrogen for 1 h. The water components of CM (0.1 g) and TEPA (100 mg) were dissolved in Milli-Q water (10 mL). The obtained solution was added dropwise into the normal emulsions continuously with a Sp1001 syringe pump in 1 h under N₂ atmosphere. The polymerization was continued for another 12 h to ascertain the maximum conversion of monomers. In order to remove the oil phase hexane or other smaller molecules, the mixture was dialyzed in a filter membrane with a molecular weight cut off of 10000 Da against a large amount of triple-distilled water for 5 days. Finally, CS capsules was obtained by freeze-drying.

Characterization

Fourier transform infrared spectrometer (FT-IR) was obtained on a Vector 22 FT-IR spectrometer with KBr pellets. Nuclear magnetic resonance spectroscopy (¹H NMR) spectrum of CM was recorded on an ANAVCE DMX500 with D₂O as solvent working at 500 MHz. For laser light scattering, the obtained emulsions were thinned with Milli-Q water. Then, the thinned latex was passed through a Millipore filter (0.45 micron) to remove any dust. Dynamic radius (R_h) and gyration radius (R_g) of the capsules were determined on a modified commercial laser light scattering spectrometer (ALV/SP-125) equipped with an ALV-5000 multi- τ digital time correlator and a He–Ne laser (632.8 nm). In dynamic LLS, intensity–intensity time correlation function $G(2)(t,q)$ was measured and its Laplace inversion resulted in a line-width distribution $G(\Gamma)$. $G(\Gamma)$ can be directly converted to the translational diffusion coefficient distribution $G(D)$ or the hydrodynamic radius distribution $f(R_h)$. Polydispersity index (PDI) of R_h was defined as Eq. 1.

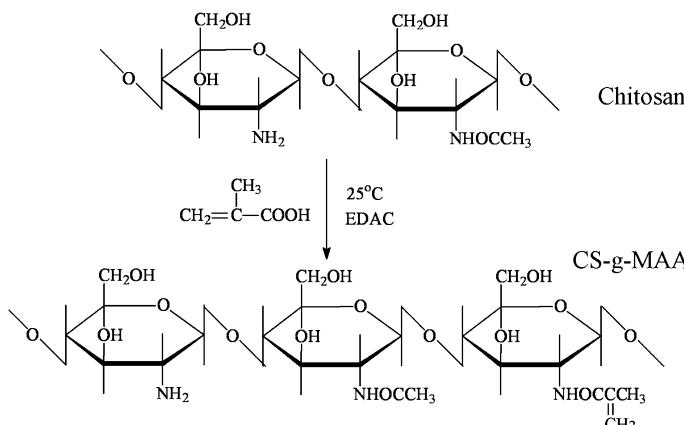
$$PDI = \mu_2/\bar{\Gamma}^2 \text{ and } \mu_2 = \int (\Gamma - \bar{\Gamma})^2 G(\Gamma) d\Gamma \quad (1)$$

In static LLS, z -average root-mean square radius of gyration ($\langle R_g^2 \rangle^{1/2}$ or written as $\langle R_g \rangle$) in a dilute solution/dispersion from Rayleigh ratio $R_{vv}(q)$ was coarsely determined at certain concentration according to Eq. 2.

$$\frac{KC}{R_{vv}(q)} \approx \frac{1}{M_w} \left(1 + \frac{1}{3} \langle R_g^2 \rangle - q^2 \right) + 2A_2 C \quad (2)$$

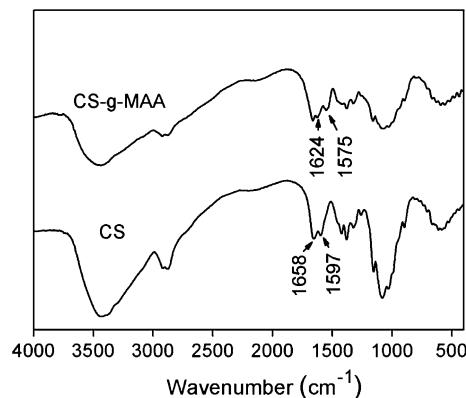
where $K = 4\pi n^2 (dn/dC)^2 / (NA \lambda_0^4)$ and $q = (4\pi n / \lambda_0) \sin(\theta/2)$ with NA, dn/dC , n , and λ_0 being Avogadro constant, specific refractive index increment, solvent refractive index, and light wavelength in vacuum, respectively, and A_2 is the second virial coefficient [28].

For observation the morphology of capsules via FESEM, silicon (Si) wafers were cleaned in a piranha solution (70/30 v/v of concentrated H₂SO₄/30% H₂O₂). During the process, we should be carefully because piranha solution reacts violently with organic compounds and should not be stored in closed containers, thoroughly rinsed with Milli-Q water, and then blown dry with nitrogen gas. Then, the purified products were thinned with ethanol to 1000 times and one drop of the thinned latex


was attached to the cleaned silicon wafers. After the evaporation of solvent naturally, the silicon wafers was sputter coating Platinum for 70 s. The morphology of products was carried out on a field-emission scanning electron microscopy (FESEM, JEOL JSM-6700) at an accelerating voltage of 10 kV. The latex was thinned with ethanol to 1000 times and one drop of the thinned latex was attached to a copper grid. After the evaporation of solvent naturally, the morphology of products were observed under Hitachi Model H-800 Transmission Electron Microscopy with an accelerating voltage of 200 kV.

Results and discussion

Synthesis and characterization of CM via EDAC as condensation reagent


CS can be regarded as a copolymer of *N*-acetylglucosamine and *N*-glucosamine units randomly distributed throughout the molecular chain. It is dissolved only in acidic solution for its strong intermolecular hydrogen bonding. It contains abundant amino groups, through which both polymerizable (e.g., acrylate) and water-soluble groups can be conveniently introduced. In the present study, MAA is grafted onto the CS chains via the combination between the carboxyl groups and the amino groups to yield water soluble and polymerizable CS–MAA the catalysis of carbodiimide (Scheme 1). Since MAA is weak acids and CS can be directly dissolved in their solutions, reaction is easy to carry out without involvement of other acid. The byproducts of small molecular weight and unreacted monomers are then removed by dialysis [29, 30].

FT-IR and ^1H NMR characterizations confirmed the structure of CS and its derivatives (Fig. 1). The IR spectrum of CS (Fig. 1a) illustrates peaks assigned to the saccharide structure at 1154, 1082, 1030, and 898 cm^{-1} [31]. The peaks at around 1654 and 1598 cm^{-1} are assigned to amide I band and NH_2 group,

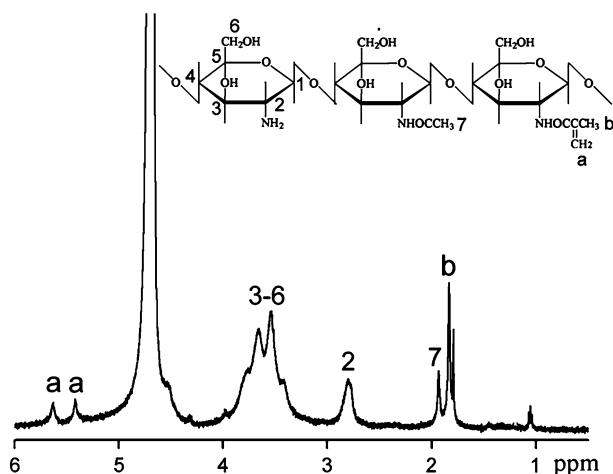

Scheme 1 MAA grafted onto CS to synthesize macromonomer CM via EDAC as condensation reagent

Fig. 1 FT-IR spectra of CS and CM

respectively. Accompanying with the weakening of absorbance at 1598 cm^{-1} , new peaks at 1624 and 1575 cm^{-1} emerge in the IR spectrum of CS-g-MAA (Fig. 1b) which should be assigned to the double bond and the amide II band, respectively. This result demonstrates that MAA has been successfully grafted.

Characterization of CS-g-MAA under ^1H NMR confirms also its molecular structure. Chemical shifts belonging to the saccharide structure are assigned as follows: ^1H NMR (D_2O) $\delta = 2.80$ (H_2), $\delta = 3.43\text{--}3.91$ ($\text{H}_3\text{--H}_6$), $\delta = 1.91$ ($-\text{NCOCH}_3$) [32]. Chemical shifts at $\delta = 5.64$ and $\delta = 5.42$ are assigned to $\text{H}_2\text{C}=\text{C}$ – (a) of MAA, respectively. Chemical shifts at $\delta = 1.84$ and $\delta = 1.20$ are assigned to methyl groups of MAA (b), respectively. The detailed peaks are marked in Fig. 2. All these results have confirmed that MAA has been grafted onto the CS chains.

Fig. 2 The ^1H NMR of CM macromonomer

Characterization of the cross linked CS capsules

CS capsules were prepared through interfacial in situ polymerization of CS macromonomer in emulsion as summarized in Table 1. The core–shell hollow morphology of the capsules containing liquid cores is clearly observed under TEM and FESEM as shown in Fig. 3a, b, c. In those images, CS appears as the black loops. The capsules are hollow due to the removal of liquid and the cores appear white to gray. Figure 3a shows the typical FESEM graphs of the CS capsules via interfacial in situ polymerization of CS macromonomer (CS-g-MAA). From the FESEM, we can see that the capsules have been collapsed under the effects of electron beam of electron microscope. Figure 3b shows us a magnified picture of Fig. 3a. Figure 3c shows the typical TEM graphs of the CS capsules which are made via CHPO and TEPA as redox interfacial initiator to initiate CS-g-MAA macromonomer in situ polymerization. Obviously, all the CS capsules exhibit the hollow inner structure. The size of the capsules lies in the range from 200 to 250 nm. The average particle diameters of the capsules are about 220. From the date, we can see that the average diameters of the capsules are smaller than the data via DLS measure (Table 1). This can be explained that the CS shell will shrink in some degree during the gradual drying process in air and under the effect of electron beam of electron microscope. The shell thickness of capsules is about ~ 30 nm. By counting 50 capsules, the averaged radius (r_0) and shell thickness (t_{shell}) were obtained and listed in Table 1. In this polymerization initiated by the redox couple, the oil-soluble oxidant component of CHPO stayed in the media of inverted emulsion while the reductive water-soluble component of TEPA existed in the water phase. Primary radicals would be produced only at the oil–water interface where both of them encountered. The primary radicals initiated the polymerization of monomers CM near the interface to form polymer propagating chains. Chitosan propagating chains might be anchored to the surfactant monolayer or escape to the media bulk. In our case, the anchoring could be caused by the interaction between the chains and the octyl group of OP. In the appropriate polymerization conditions, the anchoring of chitosan chains would form a chitosan-enriched layer at the oil–water interface and absorb the coming monomer.

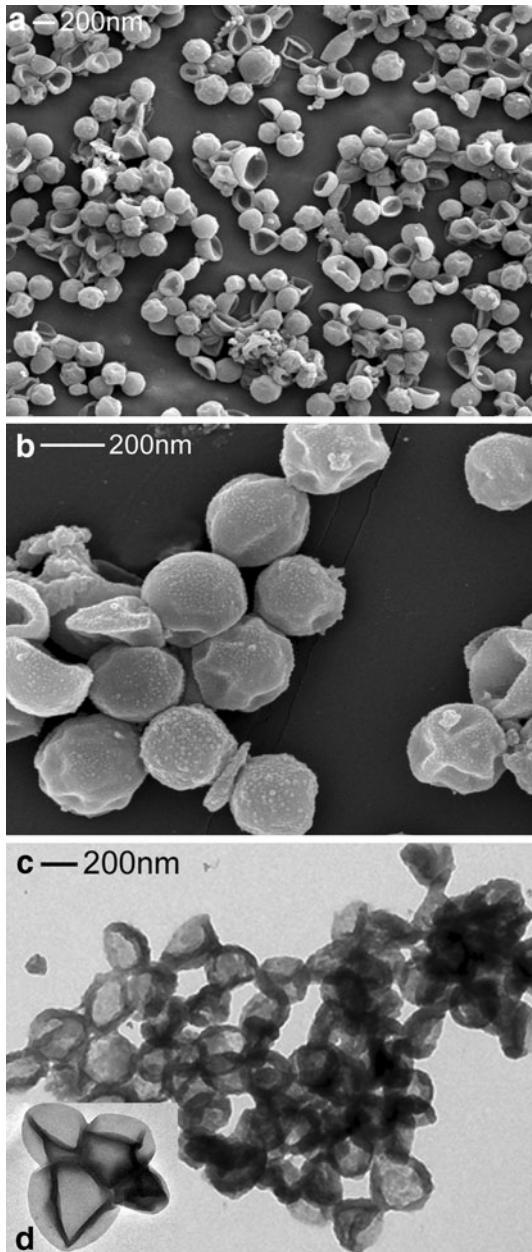

The data of hydrodynamic radius distribution ($f(R_h)$) of CS capsules containing liquid cores are listed in Table 1, indicating a little broad distribution of those capsules with R_h 156 nm. The values of their R_g are very close to those of their R_h , i.e., the ratios of R_h/R_g are about unity for capsule. These results might suggest that the hollow structure of CS capsules containing liquid cores. The diameter of capsules via DLS is about 300 nm, this is caused by the swelling of Milli-Q water.

Table 1 Interfacial in situ polymerization of CS macromonomer in emulsion

Bis (mg)	CM (g)	Size by TEM (nm)		R_g (nm)	R_h/PDI (nm)
		r_0	Thickness		
Capsule	20	0.6	120	30	148
					156/0.18

The polymerizations were carried out with CHPO (150 mg) as the initiation oxidant in hexane (3.5 mL), OP-4 (1.5 g) and OP-10 (2.5 g)/Milli-Q water (110 mL), and TEPA (100 mg) as initiation reductant

Fig. 3 **a** FESEM images of the cross linked core shell CS capsules; **b** a magnified FESEM of (a); **c, d** TEM images of the cross linked core shell CS capsules

Conclusion

In conclusion, a novel strategy for the fabrication of cross linked CS capsules with liquid core was proposed. First, Water-soluble CM is successfully synthesized via grafting MAA under the catalysis of water-soluble carbodiimide. FT-IR and ^1H

NMR analysis confirm MAA has been grafted onto chitosan to form CM macromonomer. Second, CS capsules were successfully prepared via one stage interfacial in situ polymerization. This interfacial initiated polymerization provides an efficient, one step route to synthesize polymer capsules containing liquid cores. The formation feature of primary radicals and the anchoring effect of CS chains to the interface were suggested to be the reasons for the formation of capsules with the liquid cores. Results from FESEM and TEM revealed the formation of capsules.

Acknowledgments The authors greatly appreciate the help from Central Laboratory of Analysis & Structure Research in Zhejiang University. This study is financially supported by the Natural Science Foundation of Taizhou University and the National Science Foundation for Post-doctoral Scientists of China (no. 20100471000).

References

1. Du J, Chen Y, Han C, Schmidt M (2003) Organic/inorganic hybrid vesicles based on a reactive block copolymer. *J Am Chem Soc* 125:14710–14711
2. Clark CG, Wooley KL (2001) In: Tomalia DA (ed) *Dendrimers and other dendritic polymers*. Wiley, New York, p 166
3. Liggins RT, Burr HM (2002) Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. *Adv Drug Deliv Rev* 54:191–202
4. Peyratout CS, Dahne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. *Angew Chem Int Ed* 43:3762–3783
5. Sukhorukov GB, Rogach AL, Zebli B, Liedl T, Skirtach AG, Winterhalter M, Parak WJ (2005) Nanoengineered polymer capsules: tools for detection, controlled delivery, and site-specific manipulation. *Small* 1:194–200
6. Yow HN, Routh AF (2006) Formation of liquid core-polymer shell microcapsules. *Soft Matter* 2:940–949
7. Bédard MF, De Geest BG, Skirtach AG, Möhwald H, Sukhorukov GB (2010) Polymeric microcapsules with light responsive properties for encapsulation and release. *Adv Colloid Interface Sci* 158:2–14
8. Takei T, Ikeda K, Ijima H, Kawakami K, Yoshida Mo, Hatake Y (2010) Preparation of polymeric microcapsules enclosing microbial cells by radical suspension polymerization via water-in-oil-in-water emulsion. *Polym Bull* 65:283–291
9. Sakai H, Tanaka K, Fukushima H, Tsuchiya K, Sakai K, Kondo T, Abe M (2008) Preparation of polyurea capsules using electrocapillary emulsification. *Colloid Surface B* 66:287–290
10. Jagielski N, Sharma S, Hombach V, Mailänder V, Rasche V, Landfester K (2007) Nanocapsules synthesized by miniemulsion technique for application as new contrast agent materials. *Macromol Chem Phys* 208:2229–2241
11. Zhang K, Zheng LL, Zhang XH, Chen X, Yang B (2006) Silica-PMMA core-shell and hollow nanospheres. *Colloids Surf A* 277:145–150
12. Liu HX, Gao QX, Ren BY, Liu XX, Tong Z (2009) Facile fabrication of well-defined hydrogel beads with magnetic nanocomposite shells. *Int J Pharm* 376:92–98
13. Wu M, Wang G, Xu H, Feng S, Xu R (2003) Hollow spheres based on mesostructured lead titanate with amorphous framework. *Langmuir* 19:1362–1367
14. Endo Y, Sato K, Anzai JI (2011) Preparation of avidin-containing polyelectrolyte microcapsules and their uptake and release properties. *Polym Bull* 66:711–720
15. Liu SS, Wang CY, Liu XX, Tong Z, Ren BY, Zeng F (2006) NRET from naphthalene labels in multilayer shell wall on melamine formaldehyde microparticles fabricated with layer-by-layer self-assembly to pyrene-labeled polyelectrolyte in solution. *Eur Polym J* 42:161–166
16. Tang YF, Zhao YY, Li Y, Du YM (2010) A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. *Polym Bull* 64:791–804
17. Song BF, Zhang W, Peng R, Nie T, Li Y, Jiang Q, Gao R (2009) Synthesis and cell activity of novel galactosylated chitosan as a gene carrier. *Colloid Surface B* 70:181–186

18. Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate–chitosan core–shell micro-capsules. *Biomaterials* 25:1937–1945
19. Bartkowiak A, Hunkeler D (1999) Alginate–oligochitosan microcapsules: a mechanistic study relating membrane and capsule properties to reaction conditions. *Chem Mater* 11:2486–2492
20. Vázquez E, Dewitt DM, Hammond PT, Lynn DM (2002) Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes. *J Am Chem Soc* 124:13992–13993
21. Essawy HA (2008) Poly(methyl methacrylate)-kaolinite nanocomposites prepared by interfacial polymerization with redox initiator system. *Colloid Polym Sci* 286:795–803
22. Lamb DJ, Fellows CM, Morrison BR, Gilbert RG (2005) A critical evaluation of reaction calorimetry for the study of emulsion polymerization systems: thermodynamic and kinetic aspects. *Polymer* 46:285–294
23. Chiu TP, Don TM (2008) Synthesis and characterization of poly(methyl methacrylate) nanoparticles by emulsifier-free emulsion polymerization with a redox-initiated system. *J Appl Polym Sci* 109:3622–3630
24. Zheng C, He WD, Li J, Li JF (2006) Novel one-step route for preparing amphiphilic block copolymers of styrene and *N*-isopropylacrylamide in a microemulsion. *Macromol Rapid Commun* 27:1229–1232
25. Sun QH, Deng YL (2005) In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization. *J Am Chem Soc* 127:8274–8275
26. Scheerer P, Borchery A, Krauss N, Wessner H, Gerth C, Kuhn H (2007) Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4). *Biochemistry* 46:9041–9049
27. Rodríguez R, Barandiaran MJ, Asua JM (2007) Particle nucleation in high solids miniemulsion polymerization. *Macromolecules* 40:5735–5742
28. Wu C, Gao J (1997) Modern laser light scattering: a powerful tool for the study of macromolecules and colloids (invited review). In: Hu HJ, He TB (eds) *New developments in polymer research*. Science Press, Beijing, pp 100–120
29. Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired *db/db* mice. *Biomaterials* 24:3437–3444
30. Matsuda T, Magoshi T (2002) Preparation of vinylated polysaccharides and photofabrication of tubular scaffolds as potential use in tissue engineering. *Biomacromolecules* 3:942–950
31. Xie WM, Xu PX, Wang W, Liu Q (2002) Preparation and antibacterial activity of a water-soluble chitosan derivative. *Carbohydr Polym* 50:35–40
32. Zhang C, Ping QN, Zhang HJ, Shen J (2003) Synthesis and characterization of water-soluble O-succinyl-chitosan. *Eur Polym J* 39:1629–1634